Malonyl-CoA mediates leptin hypothalamic control of feeding independent of inhibition of CPT-1a.
نویسندگان
چکیده
Hypothalamic fatty acid metabolism is involved in central nervous system controls of feeding and energy balance. Malonyl-CoA, an intermediate of fatty acid biosynthesis, is emerging as a significant player in these processes. Notably, hypothalamic malonyl-CoA has been implicated in leptin's feeding effect. Leptin treatment increases malonyl-CoA level in the hypothalamic arcuate nucleus (Arc), and this increase is required for leptin-induced decrease in food intake. However, the intracellular downstream mediators of malonyl-CoA's feeding effect have not been identified. A primary biochemical action of malonyl-CoA is the inhibition of the acyltransferase activity of carnitine palmitoyltransferase-1 (CPT-1). In the hypothalamus, the predominant isoform of CPT-1 that possesses the acyltransferase activity is CPT-1 liver type (CPT-1a). To address the role of CPT-1a in malonyl-CoA's anorectic action, we used a recombinant adenovirus expressing a mutant CPT-1a that is insensitive to malonyl-CoA inhibition. We show that Arc overexpression of the mutant CPT-1a blocked the malonyl-CoA-mediated inhibition of CPT-1 activity. However, the overexpression of this mutant did not affect the anorectic actions of leptin or central cerulenin for which an increase in Arc malonyl-CoA level is also required. Thus, CPT-1a does not appear to be involved in the malonyl-CoA's anorectic actions induced by leptin. Furthermore, long-chain fatty acyl-CoAs, substrates of CPT-1a, dissociate from malonyl-CoA's actions in the Arc under different feeding states. Together, our results suggest that Arc intracellular mechanisms of malonyl-CoA's anorectic actions induced by leptin are independent of CPT-1a. The data suggest that target(s), rather than CPT-1a, mediates malonyl-CoA action on feeding.
منابع مشابه
Important roles of brain-specific carnitine palmitoyltransferase and ceramide metabolism in leptin hypothalamic control of feeding.
Brain-specific carnitine palmitoyltransferase-1 (CPT-1c) is implicated in CNS control of food intake. In this article, we explore the role of hypothalamic CPT-1c in leptin's anorexigenic actions. We first show that adenoviral overexpression of CPT-1c in hypothalamic arcuate nucleus of rats increases food intake and concomitantly up-regulates orexigenic neuropeptide Y (NPY) and Bsx (a transcript...
متن کاملImportant role of ventromedial hypothalamic carnitine palmitoyltransferase-1a in the control of food intake.
Carnitine palmitoyltransferase-1 (CPT-1) liver isoform, or CPT-1a, is implicated in CNS control of food intake. However, the exact brain nucleus site(s) in mediating this action of CPT-1a has not been identified. In this report, we assess the role of CPT-1a in hypothalamic ventromedial nucleus (VMN). We stereotaxically injected an adenoviral vector containing CPT-1a coding sequence into the VMN...
متن کاملTargeting intermediary metabolism in the hypothalamus as a mechanism to regulate appetite.
The central nervous system mediates energy balance (energy intake and energy expenditure) in the body; the hypothalamus has a key role in this process. Recent evidence has demonstrated an important role for hypothalamic malonyl CoA in mediating energy balance. Malonyl CoA is generated by the carboxylation of acetyl CoA by acetyl CoA carboxylase and is then either incorporated into long-chain fa...
متن کاملRole of malonyl-CoA in heart disease and the hypothalamic control of obesity.
Obesity is an important contributor to the risk of developing insulin resistance, diabetes, and heart disease. Alterations in tissue levels of malonyl-CoA have the potential to impact on the severity of a number of these disorders. This review will focus on the emerging role of malonyl-CoA as a key "metabolic effector" of both obesity and cardiac fatty acid oxidation. In addition to being a sub...
متن کاملHypothalamic malonyl-coenzyme A and the control of energy balance.
An intermediate in the fatty acid biosynthetic pathway, malonyl-coenzyme A (CoA), has emerged as a major regulator of energy homeostasis not only in peripheral metabolic tissues but also in regions of the central nervous system that control satiety and energy expenditure. Fluctuations in hypothalamic malonyl-CoA lead to changes in food intake and peripheral energy expenditure in a manner consis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 301 1 شماره
صفحات -
تاریخ انتشار 2011